SPEech Feature Toolbox (SPEFT) Design and Emotional Speech Feature Extraction

نویسندگان

  • Xi Li
  • Richard Povinelli
چکیده

Preface This research focuses on designing the SPEech Feature Toolbox (SPEFT), a toolbox which integrates a large number of speech features into one graphic interface in the MATLAB environment. The toolbox is designed with a Graphical User Interface (GUI) interface which makes it easy to operate; it also provides batch process capability. Available features are categorized into subgroups including spectral features, pitch frequency detection, formant detection, pitch related features and other time domain features. A speaking style classification experiment is carried out to demonstrate the use of the SPEFT toolbox, and validate the usefulness of non-traditional features in classifying different speaking styles. The pitch-related features jitter and shimmer are combined with the traditional spectral and energy features MFCC and log energy. A Hidden Markov Models (HMMs) classifier is applied to these combined feature vectors, and the classification results between different feature combinations are compared. A thorough test of the SPEFT toolbox is also presented by comparing the extracted feature results between SPEFT and previous toolboxes across a validation test set. Acknowledgements I thank my advisor, Dr. Michael Johnson for giving me this precious opportunity to work in his speech group under NSF's Dr. Do-little project, and for the generous help and insightful guidance he has offered me in the past two years. I thank my master's thesis committee for their support and helpful reviews, Dr. I thank my colleagues, Marek, Yao, Jidong and Patrick, who constantly and generously shared their knowledge in their research fields. Most importantly, I would like to express gratitude to my parents and family members, who have been the inspiration throughout this journey. Finally, I thank all the collaborators under Dr. Do-little project, the well labeled data and their time-cosuming work significantly facilitated the process this research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation

Abstract   Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...

متن کامل

Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms

One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...

متن کامل

Feature extraction in opinion mining through Persian reviews

Opinion mining deals with an analysis of user reviews for extracting their opinions, sentiments and demands in a specific area, which can play an important role in making major decisions in such area. In general, opinion mining extracts user reviews at three levels of document, sentence and feature. Opinion mining at the feature level is taken into consideration more than the other two levels d...

متن کامل

Phoneme Classification Using Temporal Tracking of Speech Clusters in Spectro-temporal Domain

This article presents a new feature extraction technique based on the temporal tracking of clusters in spectro-temporal features space. In the proposed method, auditory cortical outputs were clustered. The attributes of speech clusters were extracted as secondary features. However, the shape and position of speech clusters change during the time. The clusters temporally tracked and temporal tra...

متن کامل

Speech Based Emotional Feature Extraction

With the increase in the computing capabilities of the microprocessors it has now become possible to do real time computations on speech signals and images, so automatic emotion recognition through speech signals has become an important area of research. In this paper we have discussed the methods of extracting emotional features from a regular speech signals. Index Terms —Emotional feature; fe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008